
Exhaustive search as a baseline 
for algorithm design

Summary



Exhaustive Search

• Estimate the number of candidates

• Generate candidates one at a time and test for the 
optimal solution



Optimization techniques for 
Exhaustive Computation

1. Avoid recomputation between successive candidates (Max-
sublist 2, KMP)

2. Reduce the size of the candidate set (Max-sublist 3, 
Euclidean GCD)

3. Eliminate non-promising candidates during the search: 
backtracking (n-Queens problem)



Exhaustive algorithms: Sorting

Selection sort

• Scan array to find smallest element
• Scan array to find second smallest element
• etc.

Complexity? 

Can we do better? 

https://www.youtube.com/watch?v=g-PGLbMth_g


Exhaustive algorithms: Sorting

Selection sort

• Scan array to find smallest element
• Scan array to find second smallest element
• etc.

Complexity? O(n2)

Can we do better? Yes. See divide-and-conquer.

https://www.youtube.com/watch?v=g-PGLbMth_g


Exhaustive algorithms: Searching

Sequential scan:

• Go through the entire list of n items to find the desired 
item

Complexity? 

Can we do better?



Exhaustive algorithms: Searching

Sequential scan:

• Go through the entire list of n items to find the desired 
item

Complexity? O(n)

Can we do better?

No. Not really.



Exhaustive algorithms: 
graph traversals
DFS and BFS:

• Shortest paths in unweighted graphs

• Topological sorting

• Discovering strongly-connected components

Complexity? 

Can we do better?



Exhaustive algorithms: 
graph traversals
DFS and BFS:

• Shortest paths in unweighted graphs

• Topological sorting

• Discovering strongly-connected components

Complexity? O(n + m)

Can we do better?

No. Not really. We have to traverse all the vertices and edges



Knapsack 01 (discrete items)

Exhaustive knapsack algorithm for n items:

• Generate all possible knapsacks

• Discard all combinations that do not fit

• Compute value of each knapsack and select thje one with 
max value

Complexity? 

Can we do better?



Knapsack 01 (discrete items)

Exhaustive knapsack algorithm for n items:

• Generate all possible knapsacks

• Discard all combinations that do not fit

• Compute value of each knapsack and select thje one with 
max value

Complexity? O(2n) 

Can we do better?

Yes. See dynamic programming



Introducing Closest Pair

Motivation

• Airplanes close to colliding
• Which post offices should be closed
• Which DNA sequences are most similar
• The nearest-neighbor classifier

Input: n points in d-dimensional space
Output: a pair of points with the smallest distance 
between them 

Closest-Pair Problem



Brute Force for Closest Pair
• Exhaustive Solution (for 2-D case):

• Compute distances between all pairs of points

sqrt((xi – xj)
2 + (yi – yj)

2)

• Scan all distances to find smallest

• Complexity: O(n2), assuming each numerical operation is constant 
time (including square root?)

• Improvements:

• Drop the square root

• Don’t compute distance for same 2 points twice

• Does this improve complexity?

Can we do better?

Yes, see divide-and-conquer.



Summary of algorithms so far

• Graph Traversals

• GCD*

• Generating primes*

• Max sublist*

• Sorting*:  selection sort

• Searching: pattern search*

• Geometry:  the closest pair*

• Knapsack 01*

* Can be improved just by applying an optimization ... 

* Can be improved with divide-and-conquer

* Can be improved with dynamic programming

https://www.youtube.com/watch?v=g-PGLbMth_g&t=25s

