Exhaustive search as a baseline
for algorithm design

Summary



Exhaustive Search

* Estimate the number of candidates

®* Generate candidates one at a time and test for the
optimal solution



Optimization techniques for
Exhaustive Computation

1. Avoid recomputation between successive candidates (Max-
sublist 2, KMP)

2. Reduce the size of the candidate set (Max-sublist 3,
Euclidean GCD)

3. Eliminate non-promising candidates during the search:
backtracking (n-Queens problem)



Exhaustive algorithms: Sorting

Selection sort

e Scan array to find smallest element
e Scan array to find second smallest element
e etc.

Complexity?

Can we do better?


https://www.youtube.com/watch?v=g-PGLbMth_g

Exhaustive algorithms: Sorting

Selection sort

e Scan array to find smallest element
e Scan array to find second smallest element
e etc.

Complexity? O(n?)

Can we do better? Yes. See divide-and-conquer.


https://www.youtube.com/watch?v=g-PGLbMth_g

Exhaustive algorithms: Searching

Sequential scan:

* Go through the entire list of n items to find the desired
item

Complexity?

Can we do better?



Exhaustive algorithms: Searching

Sequential scan:

* Go through the entire list of n items to find the desired
item

Complexity? O(n)

Can we do better?

No. Not really.



Exhaustive algorithmes:
graph traversals

DFS and BFS:

* Shortest paths in unweighted graphs
 Topological sorting

* Discovering strongly-connected components
Complexity?

Can we do better?



Exhaustive algorithmes:
graph traversals

DFS and BFS:

* Shortest paths in unweighted graphs
 Topological sorting

* Discovering strongly-connected components
Complexity? O(n + m)

Can we do better?

No. Not really. We have to traverse all the vertices and edges



Knapsack 01 (discrete items)

Exhaustive knapsack algorithm for n items:
* Generate all possible knapsacks
* Discard all combinations that do not fit

 Compute value of each knapsack and select thje one with
max value

Complexity?

Can we do better?



Knapsack 01 (discrete items)

Exhaustive knapsack algorithm for n items:
* Generate all possible knapsacks
* Discard all combinations that do not fit

 Compute value of each knapsack and select thje one with
max value

Complexity? O(2")

Can we do better?

Yes. See dynamic programming



Introducing Closest Pair

Closest-Pair Problem

Input: n points in d-dimensional space
Output: a pair of points with the smallest distance
between them

Motivation

Airplanes close to colliding

Which post offices should be closed
Which DNA sequences are most similar
The nearest-neighbor classifier



Brute Force for Closest Pair

e Exhaustive Solution (for 2-D case):
e Compute distances between all pairs of points
sqrt((xi - Xj)z + (yi - yj)z)
e Scan all distances to find smallest
e Complexity: O(n?), assuming each numerical operation is constant
time (including square root?)
e [mprovements:
e Drop the square root
e Don’t compute distance for same 2 points twice
e Does this improve complexity?

Can we do better?

, see divide-and-conquer.



Summary of algorithms so far

* Graph Traversals
* GCD

* Generating primes
* Max sublist

e Sorting™: selection sort

* Searching: pattern search
 Geometry: the closest pair*
e Knapsack 01*

Can be improved just by applying an optimization ...
* Can be improved with divide-and-conquer

* Can be improved with dynamic programming


https://www.youtube.com/watch?v=g-PGLbMth_g&t=25s

